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Abstract—Elliptic Curve Cryptography operations rely heavily
on the strong security of scalar multiplication. However, this
operation is vulnerable to side channel (SCA) and fault injection
(FA) attacks. The use of alternative arithmetic systems like
Residue Number System (RNS) for all scalar multiplication
underline operations has been proposed as an efficient coun-
termeasure approach for the above attacks. In RNS, a number
is represented as a set of smaller numbers, where each one
is the result of the modular reduction with a given moduli
basis. Under certain requirements, a number can be uniquely
transformed from the integers to the RNS domain (and vice
versa) and all arithmetic operations can be performed in RNS.
This representation provides an inherent SCA and FA resistance
to many attacks and can be further enhanced by additional
RNS arithmetic manipulations or more traditional algorithmic
countermeasures. In this paper, extending our previous work, we
explore the potentials of RNS as an SCA and FA countermeasure.
A description of RNS based SCA and FA resistance means is
provided through appropriate scalar multiplication algorithmic
variations, traces of the proposed algorithm are collected and
the results are analyzed regarding the RNS countermeasure
strength. More specifically, in this paper, a secure RNS based
Montgomery Power Ladder based scalar multiplication algo-
rithm is provided and is implemented on an ARM Cortex A7
processor. The implementation SCA-FA resistance is evaluated
by collecting preliminary leakage trace results that validate our
initial assumptions.

1. INTRODUCTION

In the RNS arithmetic representation, a number is rep-
resented by a given moduli base (RNS base) consisting of
several base elements that can be processed in parallel (parallel
arithmetic calculations advantage). The system can also be
used to represent elements of cyclic groups or finite fields and
thus can be applied to Elliptic Curves (that use finite fields).
The parallelism that RNS arithmetic provides, constitutes a
good cause for adopting this system for finite field operations
(and consecutively Elliptic Curve operations). The parallel
processing of any type of finite field operation outcome apart
from speed may also increase the power consumption trace
complexity, thus offering a basic Side Channel Attack (SCA)
resistance. Taking also into account that a single bit fault
in a moduli can lead to “difficult to trace” changes in an
overall finite field element, supports the argument that the
RNS can be introduced as SCA and Fault injection Attack
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(FA) countermeasure in cryptosystems [2] [4] [15] [21] [10]
[11].

Scalar multiplication, the key operation behind Elliptic
Curve Cryptography (ECC), relies heavily on finite field to
perform all arithmetic operations. Thus, the introduction of
RNS as the number system for GF'(p) elements and their op-
erations can be a step towards increasing SCA/FA resistance.
However, this does not constitute enough protection against
SCAs/FAs nor does it guarantee efficient implementations.

Several researchers have made observations about the po-
tentials of RNS as SCA countermeasure as well as a FA
countermeasure. Bajard et al. in [2] proposes, originally for
modular exponentiation, a random permutation of the moduli
bases. The periodic change using base permutation during
the modular exponentiation (and consecutively scalar multi-
plication) computation flow can introduce enough randomness
to thwart SCAs. This approach leads to a leak resistant
arithmetic (LRA) technique that can be applied to modular
exponentiation designs (used for RSA) in two ways, either by
choosing a new base permutation once at the beginning of
each modular exponentiation or by changing a permutation in
each modular multiplication operation of the exponentiation
process [11].

In this paper, we explore the RNS potentials in elliptic curve
scalar multiplication, extending the work done in [11], taking
into account the arithmetic system’s benefits and combining it
with more traditional SCA/FA countermeasures. The various
ways of transformation from RNS arithmetic to binary are
explored as well as the way of performing RNS modular
multiplication. The RNS version of the Montgomery modular
multiplication algorithm is presented and its importance as the
basis of a secure RNS scalar multiplication implementation is
described. Current approaches on designing RN'S Montgomery
multiplication are also presented in an effort to support our
argument that the algorithm can be used as a basis for SCA/FA
resistance in scalar multiplication. The approach described in
[11], in this paper, is expanded and analyzed in detail so as to
provided further justification to the above described cause, thus
detailing the description of a scalar multiplication algorithm
variant capable of offering SCA/FA resistance through the
combination of RNS characteristics and traditional scalar mul-
tiplication algorithmic countermeasures like the Montgomery



Power Ladder. The RNS based resistance of our approach
adopts the random permutation of the RNS bases in each
scalar multiplication algorithmic round, thus adapting the
LRA technique for scalar multiplication and modifying it
in order to achieve a good trade-off between efficiency and
SCA/FA resistance yet fully retaining the disassociation of
secret information from physical leakage. Furthermore, in our
approach we take advantage of the base extension operation
that is performed during an RNS Montgomery modular mul-
tiplication in order to enhance fault detection. In this paper,
as opposed to [11] where only a theoretical security analysis
is present, the correctness of the proposed solution is verified
and its security is tested, by implementing the described scalar
multiplication algorithm in the ARM Cortex A7 processor of
a Raspberry Pi 2 using GMP C library as a basis for all arith-
metic operations. Electromagnetic leakage traces were also
collected while a scalar multiplication was running with and
without our proposed SCA/FA countermeasure approach and
after analysis, several interesting conclusions were extracted
proving the proposed approach quality.

The rest of the paper is organized as follows. In section
IT the RNS arithmetic for ECC is presented. Section III
presents the employed algorithm and argues over its SCA/FA
resistance. Details of our implementation are included in
section IV and some preliminary measurements, results of our
SCA/FA analysis are presented in section V. Finally, section
VI concludes the paper.

II. RNS FOR EC POINT OPERATIONS

A number x can be represented in RNS as a set of n
moduli z; (x RNS x . (z1,x2,...xn)) of a given RNS
basis B : (mq,ma,...my) as long as 0 < = < M where
M =TT, m; is the RNS dynamic range and all m; are pair-
wise relatively prime. Each z; can be derived from z by calcu-
lating z; = (z),, = x mod m;. Assuming that we have two
numbers a and d represented in RNS as A : (a1, ag, ...a,) and
D : (dy,d3,...d,) we can obtain addition, subtraction and mul-
tiplication in RNS as A©D = ((a1 @ du),,, ;- (an @ dyn),, )
where @ : (+, —, X). Exact division by D coprime with M
is equivalent to multiplying by the inverse (D~1),;. Since
RNS is a non-positional representation, comparisons, divisions
and modular reductions are complex operations, which are
performed either by converting the number from RNS to
binary representation or by using base extension algorithms.

Binary reconstruction from RNS representation can be
done using the Chinese Remainder Theorem (CRT) z =
<Z?:1 (; 'Mi_l>mi . MZ> where M, = mM and M; ! is
the multiplicative inverse of Mz over moduli m;. The required
M modulo reduction, due to the high bit length of M , is not
efficiently realized and is usually performed by introducing a
correction factor w, where r = Z?:l <$L . Mi_1>ml - M; —
w - M.

To avoid the above process, x’s Mixed Radix System (MRS)
representation X : (uy,uz,...u,) can be used for RNS to
binary conversion. The MRS number X can be obtained

from X : (z1,%2,x3,...x,) by executing the Mixed Radix
Conversion (MRC) algorithm of (1).

up =1 up = {(z2 — ) ‘mi§>m2

Uz = <((T3 —uy) mfé — ug) - mié)ms

ey
Uy = <((1:n—u1)-mii—u2)-m2i}]—...
— Up—1) - m;iLn)mn

where m;_ jl is the multiplicative inverse of m; modulo m; i.e.
—1

mi-m; ; = 1 mod m;. From the MRS number representation,
an integer x can be recovered by performing x = uy + gaus +
g3uz + ...+ gpu, wWhere g; = H;’-Zl m;.

For ECC approved ECs defined over GF(p) (EC on
GF(2%) are not discussed in this paper), all GF(p) op-
erations (addition, subtraction, multiplication) are modular
operations. Performing RNS GF(p) addition or subtraction
can be easily realized by expressing p in RNS format i.e.

P : (p1,p2,p3,...pn) and calculating:

(A2 D)mod P = (<<a1 %) d1>m1 >p1 7<<a2 © d2>m2>p2 .

o lan @ dn),,, >pn) where @ : (+,—)
(2)

However, RNS modular multiplication over GF'(p) is a
computationally difficult operation. It is usually realized
through the RNS Montgomery multiplication algorithm that
avoids modular inversions, but includes base extension opera-
tions [3] [11].

A. RNS Base Extension

Assuming that we introduce two RNS bases B, =
(m1,ma,...,my) and B, = (Mnpy1,Mnpyo,...,May,) such
that ged(m;,m;) =1 for all i € {1,n} and j € {n+1,2n},
we express a GF(p) number x in base B,, or Efn as Xp and
X p respectively while in both RNS bases as X, | 5. We define
Mg p as Mg 5 = Hfﬁl m;, also, Mg = [[;_, m; and
Mg~ as the ;nultiplicative inverse of Mp in base B,, as well
as My =I[;2, .1 m; and M,;l as the multiplicative inverse
of My in base B,. The RNS Montgomery multiplication
(RNSMM) is presented as Algorithm 1 and as an outcome cal-
culates S = A-B-Mp" mod pand Sy = A-B-My" mod p.
Base extension from one base to the other in Algorithm
1 is needed since My ! cannot be computed directly for
base B,, (M is multiple of the base elements) and therefore
computations must be migrated to the B,, base to come up
with Spg.

Two main approaches to base extension are used in practice
for RNS arithmetic: the MRS system and the Cox-Rower
architecture introduced in [17]. The Cox-Rower architecture
consists of parallel arithmetic units, the Rowers, which per-
form the independent computations for each base concur-
rently, and the Cox unit dedicated to the computation of an
approximation of the correction factor w. Therefore, it can
be efficiently implemented in hardware. An interesting work



Algorithm 1. RNS Montgomery Modular Multiplication
RNSMM(A, D, P, By, By,)

Input: B, = (ml,..wmn),B)n = (Mn+1,...,M2n),

Pyip = PUPg: (p1,02,-PnsPnt1,---D2n),

Mp =17y mi. My =TT, ma,

ABUB = Ap UAB :{al,...,an,an_*_l,...agn},
Dyg,p=DpUDy:{d1,...,dn,dns1,...,d2n}, M3, —Pg!
Output: Sp = Ap - Dp - M'gl modPp and

L. Gpup =Apup X Dpup ) )
ie. (g; = (a; x di>mi in base B, and ¢; = <a’i X di> _ in base Bp)

nig
+u—a g ie (o), Y
’ i/ my
3. QB — Qp Base extension B, — B
4 Ry =Gy+Qp x Py
5. 85 =Ry x Mg )
6. S — Sp Base extension Bp, — Bp
Return Sp and Sp

in protecting the Cox-Rower architecture against multi-fault
attacks is presented in [1].

The MRS system is often used for RNSMM base extension,
despite the fact that it is sequential and therefore slower
compared to Cox-Rower. As a first step of MRS, the base
B,, RNS number is converted into a base B,, MRS number
following (1). In the second step, the base B,, MRS number
is converted into a base Bn RNS number according to (3).
A similar two step procedure is followed for base extension
from Bn to B,, respectively.

zj = (14 +mp_3 (@2 + (Mp_2 (X1 + (Mp_127)))))

for all je{n+1,n+2,..2n} of B,
(3)

It must be noted that each RNS number A used in Mont-
gomery multiplication must be represented in the Montgomery
format, meaning in the form Ap - Mp modPp or Ag -
Mg modPg. To transform a number in the Montgomery
normalized form, an RNSMM must be performed between
A and My g mod P using the bases B, and Bn in re-
verse order (i.e. RNSMM (A, My z modP, P, B, B,)). To
leave the Montgomery domain we must perform an RNSMM
of the Montgomery formatted RNS number A with 1 (i.e.
RNSMM(A,1,P,B,, B,)).

Efficient base extension operation heavily relies on the
choice of B, and B,. To increase computation efficiency,
the bases’ moduli must be chosen so that their multiplicative
inverses are small numbers. Most studies on optimal base
moduli [8] [5] agree that moduli of the form 2kt 2k _otit]
or 2k ok — 1 9k-1 _ 1 2k+1 _ 1 (Mersenne numbers) for
various ¢ values provide good performance results. Each base’s
moduli (n) number must also be optimally determined as well
as each moduli’s k value (defining all involved values bit
length). Usually, such numbers are specified according to the
GF(p) defining the EC. The RNS bases B,, and B, dynamic
range must be close to p (4p < M). Recent results from
Bigou and Tisserand in [7] show how to perform RNS modular
multiplication with a single base bit width instead of a double

one, which results in two times faster implementation for the
same area.

B. Using RNS for SCA and FA resistance

Several researchers have pointed out the potentials of RNS
as a side-channel and fault injection attack countermeasure.
Bajard et al. in [2] proposes, originally for modular exponen-
tiation, a random permutation of the base B,, and Bn moduli

. 2n ) .
thus creating (7711 ) random permutations of B, and B,. We

denote each such RNS Base v permutation as B,, , and B,’w.
The periodic change of a base permutation during the mod-
ular exponentiation (and consecutively scalar multiplication)
computation flow, as presented in Figure 1, can introduce
enough randomness to thwart SCAs as long as the number
of moduli is high. This approach leads to a leak resistant
arithmetic (LRA) technique that can be applied to modular
exponentiation designs (used for RSA) in two ways, either by
choosing a new base permutation once at the beginning of
each modular exponentiation or by changing a permutation
in each RNSMM operation of the exponentiation process.
The base transition of an RNS number A represented in a
base permutation 7 to a new permutation 4 can be done
by performing two consecutive RNSMMs. Initially A; =
RNSMM(A, Mg gz mod P,P, Bn,gﬂBn/y) I is performed
and it is followed by RNSMM(A;,1, P, B, -, B, )

Pool of 2n RNS Base moduli

m; bl bz b3 b4 b2n-3 b2n-2 l:)Zn-l l:)Zn
[ =X ~~r [/ >x

I Random placement (permutation) of n moduli as B, and the remaining n moduli as B’, I

bl b3 b2n—3 b2n b2n—2 b2 b4 I:)Zn—l
m m; . My My, Mps1 Mps2 oo Mpp g My,
Base B, Base B’,,

Bases to be used in RNS MM (Base extension)

Fig. 1. Leak Resistant Arithmetic approach on Base Randomization

Applying the LRA technique in scalar multiplication follows
a similar approach to modular exponentiation. Some attempts
to introduce LRA in scalar multiplication have been made
in [15] [14], however, they are applicable only to the CRT
type of base extension using the Cow-Rower method when
pseudo-Mersenne numbers are used for base moduli. In scalar
multiplication, a permutation transition can be done only once
(per scalar multiplication), in every round of the scalar mul-
tiplication process or before every GF'(p) RNSMM operation
of every point operation of every round. Taking into account
that the transition from one permutation to another costs 2
RNSMM, the third approach is not affordable in terms of
speed. The first approach, providing a single randomization
per scalar multiplication may be vulnerable to horizontal SCA

'Note that A has the form A - M By, mod P (Montgomery form) since
it is an output of some previous RNSMM



attacks (depending on the employed implementation method-
ology) so of special interest is the second approach were
the RNS bases are permuted once per scalar multiplication
round. This approach offers a promising balance between
performance and SCA resistance strength.

RNS has a long history as fault tolerance and detection
tool and thus can be used for identifying possible FAs. Fault
detection through RNS is achieved by introducing redundancy
during RNSMM as described in [4] [20]. In the existing two
RNS bases moduli B,, and Bn used in RNSMM, a redundant
moduli m,. is added. Thus the RNSMM algorithm is executed
using redundant bases B,, U m, and Bn U m,.. Key point in
the detection process is base extension of the RNS values
during RNSMM from base B,, to Bn Um, instead of Bn (in
step 3 of Algorithm 1) as well as base extension from B, to
B, Ump (in step 6 of Algorithm 1). The redundant RNSMM
algorithm results Spyy,, and S Bum, include moduli related

to base element m, <i.e. (Spum,),,, and <SBUmT> CIf

no fault is injected during an RNSMM then the 2 moduli must
be the same. This approach is capable of detecting a single
fault during a RNSMM and its main additional performance
cost (compared to the original RNSMM) is associated with
the RNS Base extension operations. A similar fault detection
technique was proposed in [15] but is applicable only to Cox
Rower RNSMM designs (that use the CRT base extension
method) while the technique described here and proposed in
[4] [11] is generic and can be applied to any base extension
methodology.

III. FA AND SCA RESISTANT SCALAR MULTIPLICATION

Given the description of RNS SCA and FA countermea-
sures, we adopt the inclusion of LRA as an add-on counter-
measure in an SCA resistant SM algorithm in order to provide
horizontal and vertical attacks resistance. In the described
algorithm (Algorithm 2), LRA is combined with the base point
blinding technique (additive randomization of the EC base
point V') in the Montgomery Power Ladder (MPL) algorithm
expanding the work of [12] [10] and [11]. MPL is considered
secure against most vertical and horizontal attacks.

In Algorithm 2, we introduce LRA RNS base randomization
once in each SM round (steps 4c and 4d) and in that way
manage to include a different randomization element in every
round. The input point V' is initially blinded by adding to it a
random element R, thus preventing sophisticated, comparative
simple PAs [9]. MPL is a highly regular SM algorithm since
it always performs two point operations per round, regardless
of the scalar bit e;. It also provides an intrinsic fault detection
mechanism based on the mathematical coherence of Ry and
R;. As observed in [16] and by Giraud in [13], the Ry
and R; points in an MPL round always satisfy the equation
Ry =V + R;. Injecting a fault during computation in an R,
or Ry variable will ruin this coherence and by introducing an
MPL coherence detection mechanism in the end of the MPL
algorithm, this fault will always be detected. This technique is
adopted in step 6 of Algorithm 1 where Ro+V # R; if a fault

is injected. Note that the correct result is unblinded only after
the fault detection mechanism, in order to provide protection
against possible bypassing (by injecting a second fault) of the
fault detection countermeasure. The added randomness before
the beginning of scalar multiplication helps in this second
fault protection approach since if an error occurs during scalar
multiplication this will affect also the random number used
during this operation (it will be different than the originally
used value) so the final outcome Ry + R, won’t reveal
the faulty scalar multiplication output but rather a random
number (the faulty random number won’t be R?* thus won’t
be eliminated when adding Ry = —R? to Ryp), as is argued
in [18] for a similar case (for RSA).

By exploiting the MPL intrinsic characteristic (a traditional
fault detection method) there is no need for an additional, re-
dundant, RNS base modulo (m ) in order to introduce a potent
fault detection mechanism in the proposed SCA/FA counter-
measure approach. Using such modulo in every RNSMM will
be introducing additional computation effort (efficiency reduc-
tion) to the RNSMM base extension operation and additional
memory requirements for precomputations. This additional
cost in every RNSMM of every Scalar multiplication round
is exchanged with the operations done in step 6 of Algorithm
2.

Algorithm 2. LRA SCA-FA Blinded MPL algorithm
Input: EC base point V, random point R € EC(GF(p)), e =
(et—1,et—2,...€q)
Ouput: e - V or random value (in case of faults)
1. Choose random initial base permutation ;. Transform V, R to RNS format
using y; permutation
2.Ro=R,Ri =R+V,Ry=—-R
3. CMF(Ro, R1,R2, Bn ¢ By
4. Fori=t—1to0
(a) R2 = 2R», always performed in initial permutation ¢
(b) choose a random base permutation ~y;
(c) RBP(Ry, B7L7’Yri,+1 P B’/n,%‘+1 » Bnyis Bi”v’hi)
(d) RBP(Ry, Bn,'y,H_l 5 Bn,'\/H_l s Bnvis Bﬂf‘/i)

(e)ife; =1
Ro = Ro + R1 and R; = 2R; in permutation ~y;
else
Ri1 = Ro 4+ R1 and Ry = 2Ry in permutation ~y;
end if

wn

- RBP(V, Bn v, Bn,~¢, Bnyvo, Bnyo)
6. If (i and e are not modified and Ro + V = R1)
then
(a) RBP(RO, Bivg» Bryvo s By s Bn,'yt)
(b) return Rg + Ro
else return error

All EC points in Algorithm 2 are represented in projective
coordinates. Conversion to Montgomery Format (CMF) oper-
ation is used for transforming all EC point coordinates into
the Montgomery format, so that RNSMM can be performed
correctly. This conversion will require 7 RNSMM:s as shown in
Algorithm 3. The RBP function performs base transformation
from base permutation « to permutation <, as described in
Algorithm 4, and requires 12 RNSMMs. The RBP function
is executed in each MPL round once for point Ry and once
for Ry. As it can be observed from Algorithm 2, we do not
perform RBP for the R, point doubling since this opera-
tion already includes computations only of a random point



(it remains random during the whole scalar multiplication
without any interference). Note that R, computations retain
the same base permutation 7, in all MPL rounds since Ro
point doubling involves only the random EC point R (no
need to re-randomize it through RBP). However, since V is
used in the fault detection mechanism and Rs is needed for
unblinding the correct result, after the last MPL round, there
is a base transformation from the initial permutation ~, to the
last round’s permutation 7y for V' and there is also a base
transformation from the last round’s permutation 7, to the
initial permutation -y, that is done after passing successful fault
detection.

Algorithm 3. Point Coordinate Montgomery Form computation
CMF(Po, Py, P2, Bn, Bn)

Input: PO : (Xo,Yo,Zo), P1 : (Xl,Yl,Zl),PQ : (XQ,YQ,ZQ) EC point
€ EC(GF(p))

Output: Py, P1, P> : EC point € EC(GF(p)) under Montgomery form

I Xo = RNSMM(Xo, My, s modPp, 5, P, Bn, By)

2 Yo = RNSMM (Yo, My, 3 modPp 5, P, B, By)

3 Zo = RNSMM(Zo, My, 5 modPp i, P, Bn, By)

4 X1 = RNSMM (X1, Mg, 5 modPp, 5, P, Bu, Bn)

5 Y1 = RNSMM (Y1, My, modPy s, P, Bn, By)

6 Z1 = RNSMM(Z1, My, modPp, 5, P, By, By)
7 X2 = RNSMM((—Xo, My, 5 modPp,, 5, P, Bn, Bn)
8 Yz = Yo

9 Z3 = Zo

Return (Xo, Yo, Zo), (X1, Y1, Z1),(X2,Y2, Z2)

Algorithm 4. Random Base Permutation
RBP(P(), B”x"(v B”:’Yv Bn,"/’ BTL‘

2
Input: Py : (Xo,Y0,Zo) EC point € EC(GF(p)) in RNS bases

By, Brvy

Output: Py : (Xo, Yo, Zo) EC point € EC(GF(p)) in RNS bases
B4y Brs )

A1 = RNSMM(Xo, My, 5 mod Py 5, P, By 5, Bn 5)

Xo = RNSMM(A1,1,P, B ~, Bn.~)

A1 = RNSMM (Yo, My, 3 mod Pp g, P, B4, Bns)

Yo = RNSMM (A1,1, P, By, Bn.)

A1 = RNSMM (Zo, M, 5 mod Pp, 5, P, B, Bns)

Zo = RNSMM(A1,1, P, Br~, Bn.~)
Return (Xo, YD, ZO)

IV. IMPLEMENTATION

In order to implement the above algorithms, a consistent
realization process was followed, based on two steps. Taking
into account that a considerable number of parameters are
constant for all scalar multiplication operations on a specific
EC (they are related to the Bases’ moduli m;, the moduli
number n and the p value of the GF(p) field defining the
EC), these values can be precomputed and stored in memory
units so as to be used repeatedly for all scalar multiplications.
Therefore, as a first step of realizing the proposed approach,
an appropriate design methodology needs to be conceived in
order to precompute and store the above mentioned values in
memory space with efficiency. This step needs to be executed
only once for all EC computations, so it can be considered as
an initialization step. The second step in the previous sections’
algorithm realization is the actual scalar multiplication design
that needs to use the precomputation structure realized in the

first step. To provide precomputations for all possible bases
moduli combinations (realizing the base permutation ), a
numeric index (denoted as permutation index) is assigned
to each such combination and a structure is associated to
this index. This permutation structure includes the following
information:

o The permutation index ~y

¢ The n moduli that constitute base 5,, 4

e The n moduli that constitute base B;W

e The current Base B,, , dynamic range Mp

There exist g%) different permutation structures that are
stored in array form.

As an outcome of the first step, an entry is created as a
memory structure for each moduli of the 2 RNS Bases (needed
in the RNSMM algorithm). Such information (for a single
entry 7) are the following:

o the moduli value m;

o the p modm; value

o the <fp_1>mi value

« A matrix of 2n elements calculating (m; ')  for all

je{0,1,2n -1} ’

e A matrix of <2’T7LL) elements calculating <M§:W> for

” m.

all v € {0,1, 224 — 1} '

> nin!

P RNS base moduli
Precomputed
Values in Memory

Generate precomputed -
RNSp I P Base Permutation entry
values B, moduli indices,
B, moduli indices,
Dynamic Range M;,
T

T

scalar base random EC domain

+ +point +point *paramelers

j‘_

T
T
TResull

Fig. 2. Overview of the employed implementation approach

Base moduli entry (index i)
m, moduli value,

p mod m,

2n element array of m,'mod m,

[2n element array of m 'mod m, ]

Scalar Multiplication

(2n) element array of M, 'mod m,
n

V. CASE STUDY AND SECURITY ANALYSIS

As a proof-of-concept implementation of the above de-
scribed two step design process, appropriate software code
was written for ARM cortex A class processors (having a
Raspberry Pi 2 as a reference design) using the GMP library
for all GF(p) operations. Following the approach of [8] and
[5] a 4 moduli RNS bases (n = 4) RNS realization was used
that have the form B,, : (2F — 2!t —1,2F —2t2 —1 2k —2ts
1,28 — 2t — 1) and B, : (2%,2F — 1,2k+1 — 1 2k=1 _ 1),
For the above approach an Edwards EC was adopted with
¢ =1 and d = 2 defined over GF(p) (twisted EC) where
p = 2192264 _1 (NIST prime field) (i.e 192 bit length GF(p)
numbers). Edwards Curves were chosen instead of Weierstrass
ones since the first have complete formulas thus offering



better SCA resistance and have never been tested under the
RNS arithmetic framework. However, the twisted Edwards
curve shape was used and not the equivalent Montgomery
form that can be combined with MPL, in order to keep the
solution generic enough so as to be somewhat usable for
other EC types. To retain compatibility with NIST Curves and
implementations of other similar works [8], the prime field
was left to be p = 192 (although the implementation can be
easily adapted to any Edwards Curve including the popular
Curve 25519). For GF'(192), we employ RNS bases that have
a 200 bit dynamic range consisting of four approximately 50
bit moduli (k = 50) for each involved RNS base B,, and B,.
The employed case study moduli are presented in Table I.

TABLE 1
EDWARDS CURVE (p = 2192 — 264 _ 1) CASE STUDY EMPLOYED 8 BASE
MODULI
mi 250_220_1 ms 250
mgy | 2592221 || mg | 250-1
mg | 250281 [ my [ 2571
ma | 2902191 | mg | 291

Since n = 4 there exist 70 different base permutations
which as an individual SCA countermeasure, introduce small
randomization. However, since this randomization is com-
bined with the base point blinding technique, the overall
randomization of the implementation leakage trace is adequate
to provide SCA resistance. This can be observed from the
collected traces using Electromagnetic Emission probes from
the Raspberry Pi’s processor during the implemented scalar
multiplication execution. More precisely, our experimental
setup is the following:

« Raspberry Pi 2 Model 8 with a 600MHz quad-core Cortex
AT processor.

« EMV Langer probe RF-U 5-2.

o Lecroy Waverunner 610Zi sampling at 2.5GS/sec.

The rationale behind choosing Raspberry Pi as our target is
twofold. Firstly, it is always interesting to attack a real-world,
original target, that has not dedicated hardware for SCA.
Secondly, a fast multi-core processor is necessary to handle
the required workload for RNS base arithmetic.

A. Profiling of the device

In this subsection, we give some technical details of the
acquisition and the steps towards profiling of the device. The
experimental setup for our analysis is quite challenging, since
the Raspberry Pi is not a common target to perform SCA.
The high levels of noise combined with the high frequency
of the processor makes it hard to establish a stable setup and
collect the whole computation with a high-end oscilloscope.
Our Pi runs at 600MHz 2, which means that from the Nyquist
principle, the sampling rate should be at least 1.2GS/sec.
Recent studies [19], suggest that the sampling rate is sufficient

2The given frequency from the specifications of model 2B is 900MHz,
but our target runs at 600MHz; if that was not the case, we would need to
underclock the CPU, in order to be able to use the given oscilloscope.

to be twice the frequency that leaks information, which is not
the same as the clock frequency in modern microprocessors;
the leakage frequency is usually smaller. However, we do not
obtain the required level of detail to perform SCA analysis
even by using the textbook rule of Nyquist. Therefore, the
sampling rate is increased to 2.5GS/sec in our experiments.
This is the highest rate for which some useful operations can
be recorded, i.e. the first two rounds of the scalar multipli-
cation. More precisely, we can collect 20M samples, which
corresponds to 8 msec. of the scalar multiplication.

Figure 3 shows traces of 20M samples in the case of
simple RNS (blue) and our proposed implementation (green).
In the second case, both base permutation randomization and
randomized input point are activated as countermeasures.

Fig. 3. Traces with no randomization of point or base (blue) and with the
proposed randomization countermeasures (green).

In the traces, we can identify the initialization and loading
of the RNS bases in the beginning of the scalar multiplication
(0 — 2.2 x 10° in the first case and 0 — 7.2 x 10% in the
second case), followed by constant time point doublings and
point additions. In the non-randomized case, the whole scalar
multiplication lasts 0.4572 sec. Each iteration consists of one
point doubling and one point addition and lasts about 2 msec.
Taking into account the limitations from the oscilloscope,
we can record up to 12 msec. of the scalar multiplication,
which corresponds to 4-5 rounds. In the case where both
randomization of the base permutation and the input point is
activated, there are three point operations instead of two, as
explained in our proposed Algorithm 2. Scalar multiplication
lasts 0.8677 sec., which is almost twice longer as the un-
protected implementation. Some extra time needed for initial-
ization of the basis and choosing the base moduli, results in
making only 2 rounds of the scalar multiplication visible in
our traces.

By performing auto-correlation of a trace with itself, we can
identify each operation (point doubling and point addition)
and its duration. For instance, in the non-randomized case,
each operation takes 2246000 samples, which corresponds to
0.8984 msec. Figure 4 depicts the results of auto-correlation



of (aligned and averaged) traces for both non-randomized and
randomized cases.

Fig. 4. Auto-correlation for non-randomized and randomized traces with itself

At this point, it is worth noticing that our implementation is
constant time, in the sense that different point operations take
exactly the same time to be completed. There is however a
slight difference in the peaks that correspond to point doubling
or point addition, which is an interesting remark from a side-
channel point of view.

B. SCA resistance

As a first step towards evaluation of our proposed imple-
mentation, we compared an implementation with the combined
countermeasures of randomizing the input point to the scalar
multiplication and randomized base permutations, and a simple
RNS implementation of MPL, as shown in figure 3. The only
SCA protection of the simple implementation is the regularity
of MPL and the inherent fault injection resistance of RNS.
As it is shown by the EM attack of Perin et al. in [20], the
RNS implementation of MPL is vulnerable to the relative-
doubling attack [22]. With the following attack scenario, we
show that our proposed implementation is resistant against
the relative-doubling attack and against the Online Template
Attacks (OTA) introduced in [6], which is more powerful
attack in the sense that it can be applied to both left-to-right
and right-to-left scalar multiplication algorithms.

We take two traces from each algorithm, one with input
point P and one with input point 2P. Then, we choose as
template the beginning of the trace, where 2P is given as
input and we perform auto-correlation of this template with
the traces that had input P. A distinguished high peak is at
the position that our template is chosen in the original trace,
as expected. However, when our proposed algorithm is used,
the result of auto-correlation does not reveal any information
about the beginning of the second iteration, since there is no
distinguished peak, as shown in figure 5. In the case, where the
simple algorithm was used, the result of the auto-correlation
is similar to our algorithm. Therefore, in both cases, where
RNS is used, OTA cannot be applied with a single trace.

Fig. 5. Correlation 2P-P for the trace with input 2P (blue) and for the trace
with input P when all randomizations are on (green).

This first analysis shows that our proposed algorithm can
indeed provide high levels of security by resisting some
types of correlation and template attacks. However, a more
detailed (differential) analysis of the leakage traces containing
several statistical tests will be performed, in order to evaluate
completely our implementation. The high noise levels of the
Raspberry Pi may lead us to choosing a different platform to
perform other types of attacks.

VI. CONCLUSIONS

This paper presented a highly regular implementation of
RNS scalar multiplication algorithm for an ARM-A processor.
This is the first software implementation using RNS, aiming
to provide the security benefits of RNS in a reasonable
running time. Our combined countermeasure consisting of
randomization of the EC base point and random permutation of
the base moduli provides resistance against the most common
PA and FA attacks. Indeed, a preliminary analysis of our traces
shows high regularity in the leakage traces. Moreover, our
proposed implementation can resist the relative-doubling and
OTA types of attacks, while a simple RNS implementation
with MPL is shown in previous works to be vulnerable to the
relative-doubling attack. As future work, we plan to evaluate
our algorithm in more sophisticated attack scenarios, in order
to prove in practice our theoretical security analysis.
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